Microbes in the News Assignment: Post #3

Article and link: “Too Clean for Our Children’s Good? The Checkup’ by Perri Klass, MD, The New York Times, April 17, 2017.

https://www.nytimes.com/2017/04/17/well/family/too-clean-for-our-childrens-good.html?rref=collection%2Ftimestopic%2FBacteria&action=click&contentCollection=science&region=stream&module=stream_unit&version=latest&contentPlacement=3&pgtype=collection&_r=0

Summary: This article talks about the many various ways in which our children are protected from interaction with microbes, including giving birth by caesarian section, bottle-feeding, and possible exposure to antibiotics. Such protection on the one hand affords protection from disease but on the other hand offers greater risk that children may experience complications of the “built environment.’ It is a concern that living in such a clean, controlled environment could lead to an underdeveloped immune system and subsequent health problems which may have otherwise been avoidable had the body been exposed to a diverse array of microbes at a young age. In order to combat this problem, it is recommended that young children be introduced to these microbes in the outside environment through “controlled exposures’ in the form of either “natural exposure’ consisting of interaction with their environment or through a type of vaccine yet to be developed.

 

Connections: This article include discussion of the development of the human microbiome, its importance in the overall health of an individual, the avenues by which children are typically first exposed to microbes, and also the concept of vaccination with microbes in order to improve health. All of these are topics which have been mentioned or discussed over the course of the semester.

 

Critical analysis: I liked the contrast that the author provided between the microbes found outdoors as opposed to those found within the “built environment.’ While I had naturally assumed that the inside of a house or apartment may be “cleaner’ than the outside world, I had not given much thought to the members of the microbial populations to be found in each of the two environments; in reality, the inside of a dwelling is not necessarily any more microbe-free than the outside, it is instead simply inhabited by a different, and possibly narrower, variety of microbes. I did not detect anything scientifically inaccurate or confusing in this article, and think that it did perform an adequate job in relaying this information to the public. The author did not get too technical in any of their explanations, yet clearly stated the anticipated problem, reasons behind that belief, and also the possible solutions to the problem.
Question: Are researchers suspecting that the health problems mentioned are primarily due to inadequate exposure to pathogenic bacteria? Or do interactions with the non-pathogenic bacteria also play a role in shaping the immune system of children? What kinds of “natural exposures’ are parents advised to pursue in order to assist their child’s immune system to develop properly?

A2: Microbes in the News

Antibody helps detect protein implicated in Alzheimer’s, other diseases

https://www.eurekalert.org/pub_releases/2017-04/wuso-ahd041417.php

Summary: The article discusses research looking to find less invasive ways to identify and then track the progress of neurodegenerative diseases like Alzheimer’s. They have accomplished the first step by crafting an antibody which binds to the protein tau, which is present in tangles when damage to the brain is occurring. The antibody allows tau to stay present in the blood and accumulate long enough to be observable via blood tests.

Connection: The article discusses the use of an human antibody, but in a way we didn’t really cover in class. The antibody is not used as a flag for the destruction of a microbe or “not-self” entity in the body, but rather keep an entity around long enough to track its concentrations.

Critical Analysis:  This article does an excellent job of explaining the issues related to diagnosing neurodegenerative diseases, as well as the way in which the protein tau is associated and was identified as a potential measurable product for blood tests. Though the study has only done limited preliminary human trials, they were able to magnify the presence of tau in the blood of individuals with known neurodegenerative diseases. I believe the article did a great job of translating the innovative way in which scientists approach problems like that of diagnostics, and the interdisciplinary cooperation and literacy that is at the command of these researchers to accomplish what was discussed.

Question:  Would this antibody have the ability to track damage as it accumulates in individuals like football players, perhaps as a longitudinal study to gain more data and a predictive model for brain damage?

A2 Microbes in the News

A Taste For Pork Helped A Deadly Virus Jump To Humans

 

https://www.npr.org/sections/goatsandsoda/2017/02/25/515258818/a-taste-for-pork-helped-a-deadly-virus-jump-to-humans

In 1999, in a small town in Malaysia, a scientist named Dr. Kaw  Bing Chua made a discovery crucial for the restructuring of the agriculture and farming industry across Malaysia (as well as Singapore, the Philippines, and several other countries). Chua discovered the virus later to known by the name of Nipah. Chua, a grad student studying virology at the time pinpointed this virus as one spreading across the country, yet no one at the time believed it.  Over the course of the next year a disease more deadly than Ebola was spreading rapidly throughout the town of Nipah, Malaysia. It eventually caught the attention of the government, and since most common viruses were spread through mosquitoes, the government treated it that way. However, after months of efforts to decrease the rate of spreading, nothing was working. This is when Chua comes back into the story. Chua was adamant that the virus in question was not in fact spread through mosquitoes, but actually through pigs. He came to this conclusion when he observed that the only demographic of people not getting the disease were Muslim, and hence were not eating pigs. Chua connected with a lab in Fort Collins, Colorado where he was able to see the virus through a special camera at their lab. The virus was identified and confirmed to be one that spreads through livestock. This led to the researchers at the CO facility contacting the Malaysian government,  who then immediately switched procedures and began focusing on stopping the spread between pigs and pigs to people.

This relates strongly to what we’ve been discussing most recently in class.  Learning how a disease spreads is critical for studying how to stop or slow it. Once the Malaysian government realized that Chua’s observations were correct, they changed policies throughout their nation. The entire farming industry was turned over and reshaped in order to minimize the spread of infectious diseases, such as the deadly Nipah virus. It really struck me in this article that the key to reducing outbreaks is to start by preventing them in the first place. The article elaborates on how serious a threat diseases like measles pose for humans. Nipah, like measles, is a respiratory virus. It spreads through close proximity, like when the pigs lived in extremely close quarters, but it also can spread just through the air. This is why taking advantage of any available immunizations is key to reducing outbreaks of potentially deadly pathogens. One question that stuck with me after reading this article was how specifically is this virus adapting to its conditions? The first outbreaks of Nipah were only due to pig to human transfers, but as of late, the virus spreads from human to human.

 

 

A2: Microbes in the News

WHO’s First-Ever List Of The Dirty Dozen Superbugs

https://www.npr.org/sections/goatsandsoda/2017/02/28/517529348/whos-first-ever-list-of-the-dirty-dozen-superbugs

The World Health Organization (WHO) recently published a list of pathogens  that are resistant to multiple antibiotics. This list was released in the hopes that it would encourage new research on antibiotics. WHO divided the list into three sections of varying severity: critical, high priority, and medium. The list includes bacteria, fungi, and viruses distributed throughout those categories. A few of the most prominent microbes listed are E. coli, gonorrhea, and salmonella. This article connects to many of the topics we’ve been learning about this semester though it mainly focuses on antibiotic resistance and spread of disease. The main reason for publishing this list was to increase research in the field of antibiotics, because these pathogens are quickly adapting and developing resistance to commonly used antibiotics. The article also discusses that some of the microbes are not only listed for their high drug resistance, but their ability to spread incredibly quickly. I thought it was interesting that it has taken this long to publish a list, and I also found it interesting that it wasn’t more publicized in the general public. While reading this it made me think and wonder just how fast will more infectious microbes be added to this list? And also how well is scientific research going to catch up to speed?

 

Microbes in the News Assignment: Post #2

Article and link: “New HIV reservoir discovered: Findings reveal a second target for cure research’, Science Daily (it should be noted that the article on Science Daily sites the University of North Carolina Health Care as their source and mentions that the original findings were published in Nature Medicine on this same date), April 17, 2017.

 

https://www.sciencedaily.com/releases/2017/04/170417114806.htm

 

Summary: This article describes scientists’ recent discovery that there is another cell within the human body which can act as a reservoir for HIV in addition to T cells: the macrophage. This discovery that macrophages are susceptible to infection by HIV is very important to current research focusing on the treatment of AIDS: this tells researchers that a successful treatment or cure would have to be effective in ridding the virus from both T cells and macrophages. One investigation found that viral replication within macrophages is effectively repressed when antiretroviral therapy is administered; however, the study also found that this effect is only temporary. Following treatment conclusion, macrophages still act as reservoirs for the virus and therefore remain capable of reinfecting the host. More research must be conducted in order to find the most effective way to resolve HIV infection of macrophage cells.

 

Connections: This relates to information we have discussed over the course of the semester in that it discusses a virus, HIV, and also cells involved in the immune response (T cells and macrophages). It also relates to the resolution of disease through treatment and also the ways in which viral cells can find ways to persist inside a host even following treatment; both of these are subjects which were briefly touched on in class this semester.

 

Critical analysis: I found it interesting to learn that HIV can also afflict host macrophage cells in addition to the host’s T cells. It has been known for some time that HIV targets T cells, but I had not heard of any other types of cells being specifically targeted by the virus. I also found it interesting that the antiretroviral therapy typically used in treating HIV infections in T cells does not work effectively on macrophages. I expect that the story is scientifically accurate as I have not seen indications to the contrary. I also did not find anything confusing in the article that would need to be corrected.  I believe that they did a good job in relating this news; it seemed as though they kept their audience in mind, and focused on relating the pertinent details and implications of this discovery without making the article too technical for those who may not have the background to understand a technical explanation.
Question: What are the most significant differences in terms of structure between T cells and macrophages which would cause antiretroviral therapeutic (ART) agents to be effective on T cells but ineffective in macrophages? Which ART’s were tested on the macrophages? What is their mechanism of action? Are scientists already aware of the specific reason that the ART does not work on macrophages?

Common virus may be celiac disease culprit

—  Article and link:

“Common virus may be celiac disease culprit’

Science News Magazine

6 April 2017

https://www.sciencenews.org/article/common-virus-may-be-celiac-disease-culprit?mode=topic&context=87&tgt=nr

—  Summary:   A study in mice suggests a reovirus (a common virus responsible for upper respiratory infections and fever in children) could cause celiac disease by blocking the immune systems regulatory response. If the first time gluten is consumed by a child while infected by a reovirus, the immune system will mount an attack against the food particle. This would cause the damage to the intestines when gluten is consumed by someone with celiac disease.

—  Connections:   We have learned about the immune system and what triggers it. There is normally a regulatory response to prevent food particles from being attacked and in this case the immune system thinks that gluten is an invader when it was originally present with a reovirus.

—  Critical analysis:   It is great that we are finally beginning to understand the underlying cause of celiac disease. We had always thought it was an immune response but why the immune system attacked gluten specifically was always a mystery. This article seems factual since it does not make any definite claims; it is only reporting what the peer reviewed paper said. It does a great job breaking down the science so that anyone can understand it and it gives you enough information to make conclusions for yourself.

—  Question:

I would like to know: how can viruses stimulate the activity of an enzyme? This is discussed in the article but not really explained. We have learned that viruses inject genetic material, so does the virus code for a protein that interacts with the enzyme or does the genetic material alone bind to the enzyme?

Microbes in the News Assignment: Post #1

Article and link: “Zika-Fighting Sterile Mosquitoes Released Near Key West’, NBC News, April 19, 2017.

https://www.nbcnews.com/storyline/zika-virus-outbreak/experimental-sterile-mosquitoes-released-near-key-west-n748251

Summary: This article aims to describe the testing of new experimental methods for the reduction of Aedes aegypti mosquito populations, a species which has been previously linked to the spread of multiple diseases, including the Zika virus. The ultimate goal of this testing is to control the spread of the Zika virus through controlling these insect vector populations. One such method has recently been tested in Key West, Florida, where lab-raised male mosquitoes infected with Wolbachia spp. of bacterium were released into habitats known to harbor populations of Aedes aegypti. The lab-raised male mosquitoes will breed with the wild female mosquitoes; however, due to the Wolbachia spp. carried by the male parent, the young produced by this coupling cannot survive to adulthood. While this method involves the use of microbes, there is another technique mentioned which instead involves genetic modification of lab-raised male mosquitoes to obtain a similar result.

Connections: This article related to the material in class through its association with Zika virus, which was covered both in our course material and also in the guest lecture given by Dan Stinchcomb. The use of these microbes by humans to alter a detrimental aspect of an environment is also an example of microbes functioning in environmental bioremediation, another topic covered in class.

Critical analysis: I found this method for mosquito population control extremely interesting. We had learned in class that certain microbes can be used to confer certain health benefits to a host organism through the transfer of particular genes, but I had not yet heard much of this particular strategy involving using members of a population as hosts for the microbe with the aim of stopping the spread of a disease from an insect vector to a human population. Both this method as well as the genetic engineering process mentioned towards the end of the article, if such methods prove effective in their goal and also harmless to the environment, would be extremely useful in inhibiting the spread of the Zika virus and thereby preventing further human infections.

This article was written in such a way as to inform the general public. As such, the scientific details and mechanisms behind the ideas discussed are not mentioned in great detail. In terms of the limited scientific details provided, I believe the article was scientifically accurate, though somewhat vague. The explanation of the science involved was somewhat simplified, and I did not detect any confusing aspects. While I personally feel that they could have included more detail behind the processes mentioned, I can see that the inclusion of too much detail could have been confusing to someone not well-versed in biological concepts. I think the article adequately communicated the highlights of the science to the public, as it stuck to the main ideas and results of the testing in an attempt to be clear and to communicate their ideas effectively.

Question: What is the mechanism by which Wolbachia spp. inhibits the development of the next generation of mosquito? Would the inhibition of mosquito populations through such methods reduce their numbers to the point where other organisms in the food chain might be affected (most specifically those organisms in the food chain which utilize mosquitoes as a food source)? In reference to the genetic engineering method for the control of mosquito population, what is altered or added in the genome of the mosquitoes in order to obtain the desired effect?

Researchers use frog mucus to fight the flu

Link:  https://www.cnn.com/2017/04/18/health/frog-flu-virus-study/index.html

Summary: The frog species Hydrophylax  bhuvistaraa secretes slime that contains a peptide that targets human H1 flu virus. Urumin, the peptide targets viruses without being toxic and harmful to human cells. This could present new ways to fight influenza in humans. Urumin targets  hemagglutinin, completely denaturing the virus after exposure.

Connections: We learned about the antibiotic penicillin in class. Penicillin is made by a fungi in order to kill bacteria it might be in competition with for nutrients. Urumin, which is secreted by the frogs, is also for the frogs own benefit. Just in the way that we sued penicillin, a naturally produced antibiotic to our advantage, we hope to use Urumin to treat influenza.

Critical Analysis:  This article seems very scientifically accurate. However, I do think mainstream media tends to sensationalize these kinds of discoveries. They had quotes from experts backing up their claims, but it would likely be a long time before Urumin would ever be able to actually be used in humans.

Question: What exactly is  hemagglutinin in the H1 virus, what makes it unique to the virus?

Researchers Discover Antifungal Agent from Pathogen Box Project

Article:Researchers Discover Antifungal Agent from Pathogen Box Project                

Source: American Society for Microbiology

https://www.asm.org/index.php/mbiosphere/item/6334-scientists-identify-promising-new-compound-for-deadly-fungal-pathogens

Summary:

The pathogen box, which is  an open-source drug discovery project, is seeking to find/create solutions to under-researched/neglected diseases. Researchers can receive this pathogen box, which is composed of 96 well plates with different compounds (thought to be anti-microbial agents, or known to have certain effects on microbes), for free as long as they report any findings within 2 years. In recent tests, a compound targeting cell walls and membranes in fungi (with low toxicity to humans) could potentially be used to treat common fungal infections Cryptococcus neoformans and Candida albicans.

Connections:

In class we have discussed finding different antibiotic targets for fungi, and the difficulty with doing so due to the physiological similarities between  humans and fungi.

Critical Analysis:

I found it interesting that there is an ongoing project like this, with seemingly high potential, that is actually providing a vast amount of knowledge on antibacterial targets. This is actually a really great idea, the fact that the boxes are free to researchers as long as data is shared in order to add to a database is really creative and cool. I feel like techniques like this could really be used to stimulate interest and action in certain subfields and topics. This article was well written, interesting and pertinent to bio students, but simple enough  for non-bio folk to have no problems reading and comprehending.

Question:

I would like to know how popular the pathogen box is (as far as how many people are using it) and what data they have gathered thus far (since its start in 2015).

The Influence of the Microbiome on Allergic Sensitization to Food

Article: The Influence of the Microbiome on Allergic Sensitization to Food
Source: The Journal of Immunology
https://www.jimmunol.org/content/198/2/581

Summary:
Within the last 50 years, there has been a major increase in the frequency of allergic diseases in developed countries such as the US. Genetics, combined with diet changes/improved sanitation/increased antibiotic and vaccination use, can be attributed with this change. These changes lead to a change in the makeup of the human microbiota, altering not only diversity but frequency as well. Specific species of bacteria can have a multitude of different effects on the body. The presence of certain gut microbes, such as E. coli, can help to stimulate a state known as “endotoxin tolerance,” which is thought to provide a protective effect against inflammatory responses. On a similar note, individuals with a lower risk of food allergies were found to have a higher prevalence of Bifidobacterium while those with a higher risk of food allergies was found to have a higher prevalence of Bacterioids. The makeup of your microbiota can have major impacts not only on your overall health but also on the way your body reacts to certain chemicals.

Connections:
The article discusses the human microbiome and the effects of its’ diversity and makeup on health and inflammatory response.

Critical Analyses:
I enjoyed the connections made between the human microbiota and human health/wellness. There is such a large connection between these, yet the field is so understudied it’s difficult to see its’ potential. One of the coolest thing I learned from this article is that when colonized with low-immunostimulatory microbiota in early life, aspects of immune education can be impaired resulting in predispostions to inflammatory diseases. This article is not a good read for those not strongly versed in scientific terminology, and is somewhat difficult for even bio students to fully comprehend due to terminology used.

Question:
How much of the field of preventative medicine is focused on the connection between the microbiota and human health? I’m curious about this because I feel like the field has so much potential, yet there doesn’t seem to be much emphasis on the microbiota and overall health.