A2: Microbes in the News

WHO’s First-Ever List Of The Dirty Dozen Superbugs

https://www.npr.org/sections/goatsandsoda/2017/02/28/517529348/whos-first-ever-list-of-the-dirty-dozen-superbugs

The World Health Organization (WHO) recently published a list of pathogens  that are resistant to multiple antibiotics. This list was released in the hopes that it would encourage new research on antibiotics. WHO divided the list into three sections of varying severity: critical, high priority, and medium. The list includes bacteria, fungi, and viruses distributed throughout those categories. A few of the most prominent microbes listed are E. coli, gonorrhea, and salmonella. This article connects to many of the topics we’ve been learning about this semester though it mainly focuses on antibiotic resistance and spread of disease. The main reason for publishing this list was to increase research in the field of antibiotics, because these pathogens are quickly adapting and developing resistance to commonly used antibiotics. The article also discusses that some of the microbes are not only listed for their high drug resistance, but their ability to spread incredibly quickly. I thought it was interesting that it has taken this long to publish a list, and I also found it interesting that it wasn’t more publicized in the general public. While reading this it made me think and wonder just how fast will more infectious microbes be added to this list? And also how well is scientific research going to catch up to speed?

 

Microbes in the News Assignment: Post #2

Article and link: “New HIV reservoir discovered: Findings reveal a second target for cure research’, Science Daily (it should be noted that the article on Science Daily sites the University of North Carolina Health Care as their source and mentions that the original findings were published in Nature Medicine on this same date), April 17, 2017.

 

https://www.sciencedaily.com/releases/2017/04/170417114806.htm

 

Summary: This article describes scientists’ recent discovery that there is another cell within the human body which can act as a reservoir for HIV in addition to T cells: the macrophage. This discovery that macrophages are susceptible to infection by HIV is very important to current research focusing on the treatment of AIDS: this tells researchers that a successful treatment or cure would have to be effective in ridding the virus from both T cells and macrophages. One investigation found that viral replication within macrophages is effectively repressed when antiretroviral therapy is administered; however, the study also found that this effect is only temporary. Following treatment conclusion, macrophages still act as reservoirs for the virus and therefore remain capable of reinfecting the host. More research must be conducted in order to find the most effective way to resolve HIV infection of macrophage cells.

 

Connections: This relates to information we have discussed over the course of the semester in that it discusses a virus, HIV, and also cells involved in the immune response (T cells and macrophages). It also relates to the resolution of disease through treatment and also the ways in which viral cells can find ways to persist inside a host even following treatment; both of these are subjects which were briefly touched on in class this semester.

 

Critical analysis: I found it interesting to learn that HIV can also afflict host macrophage cells in addition to the host’s T cells. It has been known for some time that HIV targets T cells, but I had not heard of any other types of cells being specifically targeted by the virus. I also found it interesting that the antiretroviral therapy typically used in treating HIV infections in T cells does not work effectively on macrophages. I expect that the story is scientifically accurate as I have not seen indications to the contrary. I also did not find anything confusing in the article that would need to be corrected.  I believe that they did a good job in relating this news; it seemed as though they kept their audience in mind, and focused on relating the pertinent details and implications of this discovery without making the article too technical for those who may not have the background to understand a technical explanation.
Question: What are the most significant differences in terms of structure between T cells and macrophages which would cause antiretroviral therapeutic (ART) agents to be effective on T cells but ineffective in macrophages? Which ART’s were tested on the macrophages? What is their mechanism of action? Are scientists already aware of the specific reason that the ART does not work on macrophages?

Common virus may be celiac disease culprit

—  Article and link:

“Common virus may be celiac disease culprit’

Science News Magazine

6 April 2017

https://www.sciencenews.org/article/common-virus-may-be-celiac-disease-culprit?mode=topic&context=87&tgt=nr

—  Summary:   A study in mice suggests a reovirus (a common virus responsible for upper respiratory infections and fever in children) could cause celiac disease by blocking the immune systems regulatory response. If the first time gluten is consumed by a child while infected by a reovirus, the immune system will mount an attack against the food particle. This would cause the damage to the intestines when gluten is consumed by someone with celiac disease.

—  Connections:   We have learned about the immune system and what triggers it. There is normally a regulatory response to prevent food particles from being attacked and in this case the immune system thinks that gluten is an invader when it was originally present with a reovirus.

—  Critical analysis:   It is great that we are finally beginning to understand the underlying cause of celiac disease. We had always thought it was an immune response but why the immune system attacked gluten specifically was always a mystery. This article seems factual since it does not make any definite claims; it is only reporting what the peer reviewed paper said. It does a great job breaking down the science so that anyone can understand it and it gives you enough information to make conclusions for yourself.

—  Question:

I would like to know: how can viruses stimulate the activity of an enzyme? This is discussed in the article but not really explained. We have learned that viruses inject genetic material, so does the virus code for a protein that interacts with the enzyme or does the genetic material alone bind to the enzyme?

Microbes in the News Assignment: Post #1

Article and link: “Zika-Fighting Sterile Mosquitoes Released Near Key West’, NBC News, April 19, 2017.

https://www.nbcnews.com/storyline/zika-virus-outbreak/experimental-sterile-mosquitoes-released-near-key-west-n748251

Summary: This article aims to describe the testing of new experimental methods for the reduction of Aedes aegypti mosquito populations, a species which has been previously linked to the spread of multiple diseases, including the Zika virus. The ultimate goal of this testing is to control the spread of the Zika virus through controlling these insect vector populations. One such method has recently been tested in Key West, Florida, where lab-raised male mosquitoes infected with Wolbachia spp. of bacterium were released into habitats known to harbor populations of Aedes aegypti. The lab-raised male mosquitoes will breed with the wild female mosquitoes; however, due to the Wolbachia spp. carried by the male parent, the young produced by this coupling cannot survive to adulthood. While this method involves the use of microbes, there is another technique mentioned which instead involves genetic modification of lab-raised male mosquitoes to obtain a similar result.

Connections: This article related to the material in class through its association with Zika virus, which was covered both in our course material and also in the guest lecture given by Dan Stinchcomb. The use of these microbes by humans to alter a detrimental aspect of an environment is also an example of microbes functioning in environmental bioremediation, another topic covered in class.

Critical analysis: I found this method for mosquito population control extremely interesting. We had learned in class that certain microbes can be used to confer certain health benefits to a host organism through the transfer of particular genes, but I had not yet heard much of this particular strategy involving using members of a population as hosts for the microbe with the aim of stopping the spread of a disease from an insect vector to a human population. Both this method as well as the genetic engineering process mentioned towards the end of the article, if such methods prove effective in their goal and also harmless to the environment, would be extremely useful in inhibiting the spread of the Zika virus and thereby preventing further human infections.

This article was written in such a way as to inform the general public. As such, the scientific details and mechanisms behind the ideas discussed are not mentioned in great detail. In terms of the limited scientific details provided, I believe the article was scientifically accurate, though somewhat vague. The explanation of the science involved was somewhat simplified, and I did not detect any confusing aspects. While I personally feel that they could have included more detail behind the processes mentioned, I can see that the inclusion of too much detail could have been confusing to someone not well-versed in biological concepts. I think the article adequately communicated the highlights of the science to the public, as it stuck to the main ideas and results of the testing in an attempt to be clear and to communicate their ideas effectively.

Question: What is the mechanism by which Wolbachia spp. inhibits the development of the next generation of mosquito? Would the inhibition of mosquito populations through such methods reduce their numbers to the point where other organisms in the food chain might be affected (most specifically those organisms in the food chain which utilize mosquitoes as a food source)? In reference to the genetic engineering method for the control of mosquito population, what is altered or added in the genome of the mosquitoes in order to obtain the desired effect?

Microbes in The News: Transplanted gut microbes may protect babies from infection

Transplanted gut microbes may protect babies from infection

Jana Howden: Cosmosmagazine, 21. April  2017

https://cosmosmagazine.com/biology/transplanted-gut-microbes-may-protect-babies-from-infection

A  new study in mice showed that particular gut bacteria can provide newborns with a vital protection against infection. A bacterium known as Clostridia helped the mouse pups to digest food and to be protected from infection. The researchers then exposed these mice to C. rodentium and found that only the mice transplanted with added Clostridia were able to resist infection. The team is now conducting further research to uncover the role of Clostridia in defending newborns against infection, human clinical trials are a possibility if the bacterium’s protective potential bears fruit in further animal studies.

I think this relates to a lot of things that we have discussed in this class and many  especially to the lectures on immunology and on pathogens. I found this article  to be very well written and with a lot of relevant and interesting information. I thought  the article did a good job at relaying the information.

Why and how does  Clostridia  protect newborns  from infections?

A2: Microbes in the News- Using tropical microbes to improve the environment

Article Title: Using tropical microbes to improve the environment

Source: phys.org

Date: 4-12-17

Link:  https://phys.org/news/2017-04-tropical-microbes-environment.html

Summary: Researchers have been investigating ways to use the rich and diverse microbiome of the tropic region to help advance farming and agriculture, often finding ways to use them to protect against disease or increase efficiency in some way. For example, the scientists cultured the bacterium found in the guts of tropical fish, which can possibly be probiotics for commercially grown fish by inducing it into their guts through their food. This would protect them from the same diseases that the bacterium prevent in the tropical fish, enhancing survivability and resistance to diseases that could otherwise wreak havoc on the fish. A similar method is also used to protect banana crops, using the Streptomyces bacteria as an antifungal and antibacterial in the soil.

Connections: This is similar to what we have studied about both oil spills and microbiomes, as they are using microbes to reduce man made chemical use and are introducing these bacteria to the microbiomes of the fish and the plants.

Critical Analysis: I thought it was interesting to see how microbes can be used to protect against disease and how introducing them to the guts of the fish is almost like a vaccine for the fish. Although the article is about a developing way of helping agriculture and farming, there is a good amount of depth and explanation to the story to explain what is going on to the reader. It provides what may otherwise be a little technical to read for the general public into an interesting read that explains what it is saying well.

Question: In hat other ways could this be applied? Could it be used in place of certain vaccinations in humans? Even if it is just temporary, it would be interesting to see if this could be used for things like traveling. Because different people, especially of different cultures, have different microbiomes, could this method make it easier to travel and tolerate things such as drinking water and foods in different countries?